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Network Middleboxes 
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Middleboxes are Increasingly Popular 

 Middleboxes are ubiquitous 

• # of middleboxes ~= # of routers [NSDI’12] (Enterprise) 

• Prevalent in cellular networks [SIGCOMM’11] 

 

 They provide key functionalities in modern networks 

• Original Internet design lacks many such features 
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Toward Software Middleboxes 

 Hardware middleboxes 

• Expensive 

• Proprietary 

• Hard to deploy new services 

4 

 Software middleboxes 

• Cost-effective 

• Accelerate time-to-market 

• Flexible 

• Many open-source projects 

carrier-grade NAT 

firewall 

IDS 

Commodity x86 servers 
(white box) 
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Stateful Middleboxes Dominate the Internet 

 In this talk, state = TCP/Application state 

 95+% of the Internet traffic is TCP [1] 

 Most middleboxes deal with TCP traffic 

• Stateful firewalls 

• Protocol analyzers 

• Cellular data accounting 

• Intrusion detection/prevention systems 

• Network address translation 

… 

5 

TCP

UDP

etc

[1] Comparison of Caching Strategies in Modern 

Cellular Backhaul Networks, MobiSys 2013. 

State management is complex and error-prone 
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 Custom middlebox application for data accounting 

• No open source project exists 

Example: Cellular Data Accounting System 
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Data Accounting 

System 

Gateway 

Cellular Core Network 

Internet 
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Develop a Cellular Data Accounting System 
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Requirements 

1. Follow accounting policy in South Korea 

• “Selective” accounting does not charge for TCP retransmission packets 

2. Detect TCP tunneling attack [NDSS ‘14] 

 

For every IP packet, p 

payload A payload B seq# = 10 seq# = 10 

p is retransmitted 

no yes 

p’s payload == original payload account for p 

yes 

skip accounting report abuse 

no 

Logically, simple process! 
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Cellular Data Accounting Middlebox 

 Core logic 

• Determine if a packet is retransmitted 

• Remember the original payload (e.g, by sampling) 

• Key: TCP flow management 
 

 How to implement?  

 

8 

• 50~100K code lines tightly coupled 
with their IDS logic 

Borrow code from open-source 
IDS (e.g., snort, suricata) 

• Designed for TCP end host 

• Different from middlebox semantics 
Borrow code from open-source 
kernel (e.g., Linux/FreeBSD) 

• Repeat it for every custom middlebox 
Implement your own 

flow management 
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Programming TCP Application 

 Berkeley socket API 

• Nice abstraction that separates flow management from application 

• Write better code if you know TCP 

• Never requires you to write TCP stack itself 
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TCP application 

Berkeley Socket API 

TCP/IP stack 

User level 

Kernel level 

 Typical TCP applications 

• Middlebox logic 

• Packet processing 

• Flow management 

• Spaghetti code? 

No clear 

separation! 

 Typical middleboxes? 
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mOS Networking Stack 

 Networking stack specialization for middleboxes 

• Abstraction for sub-TCP layer middlebox operations 
 

 Key concepts 

• Separation of flow management from custom logic 

• Event-driven middlebox processing 

• Per-flow resource provisioning 
 

 Benefits 

• Clean, modular development of stateful middleboxes 

• Developers focus on core logic rather than flow management 

• High performance flow management based on multi-core scalability 
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Operation Scenarios of mOS Applications 
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mOS monitor 
(passive) 

mOS monitor 
(inline) 

TCP flow processing 

… 

Multi-10Gbps traffic 

Sender TCP stack Receiver TCP stack 

Packet/flow abstraction Packet info TCP state TCP recv buf … 

Application logic mOS app 

mOS stack 

mOS networking API 

Packet/flow-level events Event handler (callback) 

core 0 core 1 core 2 core 3 core N 
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Programming Middlebox Application 

 mOS socket API 

• Inspired by Berkeley socket API 

• Separates flow management from middlebox core logic 

• Never requires you to write flow management logic itself 
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TCP application 

Berkeley Socket API 

TCP/IP stack 

User level 

Kernel level 

 Typical TCP applications  mOS middlebox applications 

mOS application 

mOS Socket API 

mOS networking 

stack 

User level 

mOS level 
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mOS Monitoring Socket Abstraction 

 Stream monitoring socket 

• Abstraction for monitoring TCP connection 

 Raw monitoring socket 

• Abstraction for monitoring IP packets 
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Custom middlebox logic 

                mOS stack 

mOS socket API 

Packets 

Flow 

context 

Socket 

User 

context 

Event generation 

Custom event handler 



Open Networking Korea (ONK) 2016 

mOS Event 

 Middlebox logic = a set of <event, event handler> tuples 
 

 Built-in event (BE) 

• Events that happen naturally in TCP processing 

– e.g., packet arrival, TCP connection start/teardown, retransmission, etc. 
 

 User-defined event (UDE) 

• User can define their own event (= base event + filter function) 
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New data 

arrival 

Packet 

arrival 

Filter 
(HTTP request) 

BE 

Filter 
(ACK packet) 

HTTP request 

arrival 

ACK packet 

arrival 

UDE 

Filter 
(counter) 

3 duplicate 

ACK arrival 

(Nested) UDE 
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Cellular Data Accounting System with mOS 
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Core Logic 

For every IP packet, p 
p is retransmitted 

no yes 

p’s payload == original payload account for p 

yes 

skip accounting report abuse 

no 

Event-action 

eREX MOS_ON_REXMIT 

eNEW MOS_ON_CONN_NEW_DATA 

eREX eNEW 

FFAKE 

eFAKE 

freport faccnt 

Filter 

Built-in events 

User-defined event 

Event handler 
(action) 

FFAKE IsFakeRexmit() 

eFAKE UDE_FAKE_REXMIT 

freport ReportAbuse() 

faccnt AccountDataUsage() 
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Cellular Data Accounting System with mOS 
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Implementation 

Event-action 

eREX MOS_ON_REXMIT 

eNEW MOS_ON_CONN_NEW_DATA 

eREX eNEW 

FFAKE 

eFAKE 

freport fusage 

Filter 

Built-in events 

User-defined event 

Event handler 
(action) 

FFAKE IsFakeRexmit() 

eFAKE UDE_FAKE_REXMIT 

freport ReportAbuse() 

fusage AccountDataUsage() 

static void 

thread_init(mctx_t mctx) 

{ 

  int msock; event_t fake_rexmit_ev; 
 

  msock = mtcp_socket(mctx, AF_INET, MOS_SOCK_MONITOR_STREAM, 0); 

 

 

 

 

} 
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Cellular Data Accounting System with mOS 
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Implementation 

Event-action 

eREX MOS_ON_REXMIT 

eNEW MOS_ON_CONN_NEW_DATA 

eREX eNEW 

FFAKE 

eFAKE 

freport fusage 

Filter 

Built-in events 

User-defined event 

Event handler 
(action) 

FFAKE IsFakeRexmit() 

eFAKE UDE_FAKE_REXMIT 

freport ReportAbuse() 

fusage AccountDataUsage() 

static void 

thread_init(mctx_t mctx) 

{ 

  int msock; event_t fake_rexmit_ev; 
 

  msock = mtcp_socket(mctx, AF_INET, MOS_SOCK_MONITOR_STREAM, 0); 

  fake_rexmit_ev = mtcp_define_event(MOS_ON_REXMIT, IsFakeRexmit); 

 

 

 

} 
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Cellular Data Accounting System with mOS 
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Implementation 

Event-action 

eREX MOS_ON_REXMIT 

eNEW MOS_ON_CONN_NEW_DATA 

eREX eNEW 

FFAKE 

eFAKE 

freport fusage 

Filter 

Built-in events 

User-defined event 

Event handler 
(action) 

FFAKE IsFakeRexmit() 

eFAKE UDE_FAKE_REXMIT 

freport ReportAbuse() 

fusage AccountDataUsage() 

static void 

thread_init(mctx_t mctx) 

{ 

  int msock; event_t fake_rexmit_ev; 
 

  msock = mtcp_socket(mctx, AF_INET, MOS_SOCK_MONITOR_STREAM, 0); 

  fake_rexmit_ev = mtcp_define_event(MOS_ON_REXMIT, IsFakeRexmit); 

  mtcp_register_callback(mctx, msock, fake_rexmit_ev, MOS_HK_SND,  
                         ReportAbuse); 

  mtcp_register_callback(mctx, msock, MOS_ON_CONN_NEW_DATA, MOS_HK_SND, 
                         AccountDataUsage); 

} 
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mOS Flow Management (Inline Mode) 

 Dual TCP stack management 

• Infer the states of both client and server TCP stacks 
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mOS stack 
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TCP stack 

Receive 
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TCP 
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TCP stack 

Receive 
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TCP 
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Fine-grained Resource Allocation 

 Not all middleboxes require full features 

• Some middleboxes do not require flow reassembly 
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TCP client TCP server 

Client side 

TCP stack 

TCP 

state 

P 

P 

Server side 

TCP stack 

TCP 

state 
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Fine-grained Resource Allocation 

 Not all middleboxes require full features 

• Some middleboxes do not require flow reassembly 

• Some middleboxes monitor only client-side data 
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TCP client TCP server 
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Receive 
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Fine-grained Resource Allocation 

 Not all middleboxes require full features 

• Some middleboxes do not require flow reassembly 

• Some middleboxes monitor only client-side data 

• No more monitoring after handling certain events 
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TCP client TCP server 

P 

P 

Global or per-flow 

manipulation 
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mOS Networking Stack for End Hosts 

 mOS networking stack also provides end host socket APIs 

• mOS networking stack can be configured as a end TCP stack 
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TCP client 
Server side 

TCP stack 

Receive 
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TCP 

state 

P 

P 

mOS TCP server 
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Current mOS stack API 
Socket creation and traffic filter 

int     mtcp_socket(mctx_t mctx, int domain, int type, int protocol); 

int     mtcp_close(mctx_t mctx, int sock); 

int     mtcp_bind_monitor_filter(mctx_t mctx, int sock, monitor_filter_t ft); 
 

User-defined event management 

event_t mtcp_define_event(event_t ev, FILTER filt); 

int     mtcp_register_callback(mctx_t mctx, int sock, event_t ev, int hook, CALLBACK cb);  
 

Per-flow user-level context management  

void *  mtcp_get_uctx(mctx_t mctx, int sock);   

void    mtcp_set_uctx(mctx_t mctx, int sock, void *uctx); 
 

Flow data reading 

ssize_t mtcp_peek(mctx_t mctx, int sock, int side, char *buf, size_t len);  

ssize_t mtcp_ppeek(mctx_t mctx, int sock, int side, char *buf, size_t count, off_t seq_off); 
 

Packet information retrieval and modification 

int     mtcp_getlastpkt(mctx_t mctx, int sock, int side, struct pkt_info *pinfo); 

int     mtcp_setlastpkt(mctx_t mctx, int sock, int side, off_t offset, byte *data, uint16_t 
datalen, int option); 
 

Flow information retrieval and flow attribute modification 

int     mtcp_getsockopt(mctx_t mctx, int sock, int l, int name, void *val, socklen_t *len);  

int     mtcp_setsockopt(mctx_t mctx, int sock, int l, int name, void *val, socklen_t len); 
 

Retrieve end-node IP addresses 

int     mtcp_getpeername(mctx_t mctx, int sock, struct sockaddr *addr, socklen_t *addrlen); 
 

Per-thread context management 

mctx_t  mtcp_create_context(int cpu);  

int     mtcp_destroy_context(mctx_t mctx); 
 

Initialization 

int     mtcp_init(const char *mos_conf_fname); 
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17 functions are currently defined 
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mOS Networking Stack Implementation 

 Per-thread library TCP stack 

• ~26K lines of C code (mTCP: ~11K lines) 

• Based on mTCP user level TCP stack [NSDI ‘14]  
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Exploits parallelism 

on multicore systems 
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mOS Networking Stack Implementation 

 Event implementation 

• Designed to scale to arbitrary number of events 

• Identical events are automatically shared by multiple flows 
 

 Applications ported to mOS: ~8x code line reduction 
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Application Modified SLOC Output 

Snort 2,104 79,889 HTTP/TCP inspection 

nDPI 765 25,483 Stateful session management 

PRADS 615 10,848 Stateful session management 

Abacus - 4,639 → 561  Detect out-of-order packet retransmission 
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Evaluation: Experiment Setup 

 Operating as in-line mode: clients  mOS applications  servers 
 

 mOS applications with mOS stream sockets 

• Flow management and forwarding packets by their flows 

• 2 x Intel E5-2690 (16 cores, 2.9 GHz) 

• 20 MB L3 cache size, 132 GB RAM 

• 6 x 10 Gbps NICs 
 

 Six pairs of clients and servers: 60 Gbps max 

• Intel E3-1220 v3 (4 cores, 3.1 GHz) 

• 8 MB L3 cache size 

• 16 GB RAM 

• 1 x 10 Gbps NIC per machine 
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Performance Scalability over # of CPU cores 
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 Concurrent number of flows: 192,000 

• Each flow downloads an 64B or 8KB content in one TCP connection 

• A new flow is spawned when a flow terminates 

 Two simple applications 

• Counting packets per flow (packet arrival event) 

• Searching for a string in flow reassembled data (full flow reassembly & DPI) 
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Performance Under Selective Resource Consumption 
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Real Application Performance 
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Application original + pcap  original + DPDK  mOS port 

Snort-AC 0.51 Gbps  8.43 Gbps  9.85 Gbps 

Snort-DFC 0.78 Gbps  10.43 Gbps  12.51 Gbps 

nDPIReader 0.66 Gbps  29.42 Gbps  28.34 Gbps 

PRADS 0.42 Gbps  2.05 Gbps  2.02 Gbps 

 4.5x ~ 28.9x performance improvement 

• Mostly due to multi-core scalable packet processing (DPDK) 
 

 mOS additionally brings code modularity and correct flow 

management 

 

 Workload: real LTE packet trace (~ 67 GB) 
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Conclusion 

 Current middlebox development suffers from  

• Lack of modularity 

• Lack of readability 

• Lack of maintainability 
 

 Key idea: reusable, common flow management for middleboxes 
 

 mOS stack: abstraction for flow management 

• Programming abstraction with socket-based API 

• Event-driven middlebox processing 

• Efficient resource usage with dynamic resource composition 
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Thank You! 

 mOS homepage: http://mos.kaist.edu/ 

• Source code and guides are now available! 

 Questions? 
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