
Open Networking Korea (ONK) 2016

A Networking Stack for Modular

Middlebox Development

Middlebox OS (mOS) Development Team

Asim Jamshed, Donghwi Kim, YoungGyoun Moon

Dongsu Han, KyoungSoo Park

Department of Electrical Engineering, KAIST

Open Networking Korea (ONK) 2016

Network Middleboxes

2

NAT Web/SSL Proxy Load Balancer

Firewall IDS/IPS

Open Networking Korea (ONK) 2016

Middleboxes are Increasingly Popular

 Middleboxes are ubiquitous

• # of middleboxes ~= # of routers [NSDI’12] (Enterprise)

• Prevalent in cellular networks [SIGCOMM’11]

 They provide key functionalities in modern networks

• Original Internet design lacks many such features

3

Open Networking Korea (ONK) 2016

Toward Software Middleboxes

 Hardware middleboxes

• Expensive

• Proprietary

• Hard to deploy new services

4

 Software middleboxes

• Cost-effective

• Accelerate time-to-market

• Flexible

• Many open-source projects

carrier-grade NAT

firewall

IDS

Commodity x86 servers
(white box)

Open Networking Korea (ONK) 2016

Stateful Middleboxes Dominate the Internet

 In this talk, state = TCP/Application state

 95+% of the Internet traffic is TCP [1]

 Most middleboxes deal with TCP traffic

• Stateful firewalls

• Protocol analyzers

• Cellular data accounting

• Intrusion detection/prevention systems

• Network address translation

…

5

TCP

UDP

etc

[1] Comparison of Caching Strategies in Modern

Cellular Backhaul Networks, MobiSys 2013.

State management is complex and error-prone

Open Networking Korea (ONK) 2016

 Custom middlebox application for data accounting

• No open source project exists

Example: Cellular Data Accounting System

6

Data Accounting

System

Gateway

Cellular Core Network

Internet

Open Networking Korea (ONK) 2016

Develop a Cellular Data Accounting System

7

Requirements

1. Follow accounting policy in South Korea

• “Selective” accounting does not charge for TCP retransmission packets

2. Detect TCP tunneling attack [NDSS ‘14]

For every IP packet, p

payload A payload B seq# = 10 seq# = 10

p is retransmitted

no yes

p’s payload == original payload account for p

yes

skip accounting report abuse

no

Logically, simple process!

Open Networking Korea (ONK) 2016

Cellular Data Accounting Middlebox

 Core logic

• Determine if a packet is retransmitted

• Remember the original payload (e.g, by sampling)

• Key: TCP flow management

 How to implement?

8

• 50~100K code lines tightly coupled
with their IDS logic

Borrow code from open-source
IDS (e.g., snort, suricata)

• Designed for TCP end host

• Different from middlebox semantics
Borrow code from open-source
kernel (e.g., Linux/FreeBSD)

• Repeat it for every custom middlebox
Implement your own

flow management

Open Networking Korea (ONK) 2016

Programming TCP Application

 Berkeley socket API

• Nice abstraction that separates flow management from application

• Write better code if you know TCP

• Never requires you to write TCP stack itself

9

TCP application

Berkeley Socket API

TCP/IP stack

User level

Kernel level

 Typical TCP applications

• Middlebox logic

• Packet processing

• Flow management

• Spaghetti code?

No clear

separation!

 Typical middleboxes?

Open Networking Korea (ONK) 2016

mOS Networking Stack

 Networking stack specialization for middleboxes

• Abstraction for sub-TCP layer middlebox operations

 Key concepts

• Separation of flow management from custom logic

• Event-driven middlebox processing

• Per-flow resource provisioning

 Benefits

• Clean, modular development of stateful middleboxes

• Developers focus on core logic rather than flow management

• High performance flow management based on multi-core scalability

10

Open Networking Korea (ONK) 2016

Operation Scenarios of mOS Applications

11

mOS monitor
(passive)

mOS monitor
(inline)

TCP flow processing

…

Multi-10Gbps traffic

Sender TCP stack Receiver TCP stack

Packet/flow abstraction Packet info TCP state TCP recv buf …

Application logic mOS app

mOS stack

mOS networking API

Packet/flow-level events Event handler (callback)

core 0 core 1 core 2 core 3 core N

Open Networking Korea (ONK) 2016

Programming Middlebox Application

 mOS socket API

• Inspired by Berkeley socket API

• Separates flow management from middlebox core logic

• Never requires you to write flow management logic itself

12

TCP application

Berkeley Socket API

TCP/IP stack

User level

Kernel level

 Typical TCP applications  mOS middlebox applications

mOS application

mOS Socket API

mOS networking

stack

User level

mOS level

Open Networking Korea (ONK) 2016

mOS Monitoring Socket Abstraction

 Stream monitoring socket

• Abstraction for monitoring TCP connection

 Raw monitoring socket

• Abstraction for monitoring IP packets

13

Custom middlebox logic

 mOS stack

mOS socket API

Packets

Flow

context

Socket

User

context

Event generation

Custom event handler

Open Networking Korea (ONK) 2016

mOS Event

 Middlebox logic = a set of <event, event handler> tuples

 Built-in event (BE)

• Events that happen naturally in TCP processing

– e.g., packet arrival, TCP connection start/teardown, retransmission, etc.

 User-defined event (UDE)

• User can define their own event (= base event + filter function)

14

New data

arrival

Packet

arrival

Filter
(HTTP request)

BE

Filter
(ACK packet)

HTTP request

arrival

ACK packet

arrival

UDE

Filter
(counter)

3 duplicate

ACK arrival

(Nested) UDE

Open Networking Korea (ONK) 2016

Cellular Data Accounting System with mOS

15

Core Logic

For every IP packet, p
p is retransmitted

no yes

p’s payload == original payload account for p

yes

skip accounting report abuse

no

Event-action

eREX MOS_ON_REXMIT

eNEW MOS_ON_CONN_NEW_DATA

eREX eNEW

FFAKE

eFAKE

freport faccnt

Filter

Built-in events

User-defined event

Event handler
(action)

FFAKE IsFakeRexmit()

eFAKE UDE_FAKE_REXMIT

freport ReportAbuse()

faccnt AccountDataUsage()

Open Networking Korea (ONK) 2016

Cellular Data Accounting System with mOS

16

Implementation

Event-action

eREX MOS_ON_REXMIT

eNEW MOS_ON_CONN_NEW_DATA

eREX eNEW

FFAKE

eFAKE

freport fusage

Filter

Built-in events

User-defined event

Event handler
(action)

FFAKE IsFakeRexmit()

eFAKE UDE_FAKE_REXMIT

freport ReportAbuse()

fusage AccountDataUsage()

static void

thread_init(mctx_t mctx)

{

 int msock; event_t fake_rexmit_ev;

 msock = mtcp_socket(mctx, AF_INET, MOS_SOCK_MONITOR_STREAM, 0);

}

Open Networking Korea (ONK) 2016

Cellular Data Accounting System with mOS

17

Implementation

Event-action

eREX MOS_ON_REXMIT

eNEW MOS_ON_CONN_NEW_DATA

eREX eNEW

FFAKE

eFAKE

freport fusage

Filter

Built-in events

User-defined event

Event handler
(action)

FFAKE IsFakeRexmit()

eFAKE UDE_FAKE_REXMIT

freport ReportAbuse()

fusage AccountDataUsage()

static void

thread_init(mctx_t mctx)

{

 int msock; event_t fake_rexmit_ev;

 msock = mtcp_socket(mctx, AF_INET, MOS_SOCK_MONITOR_STREAM, 0);

 fake_rexmit_ev = mtcp_define_event(MOS_ON_REXMIT, IsFakeRexmit);

}

Open Networking Korea (ONK) 2016

Cellular Data Accounting System with mOS

18

Implementation

Event-action

eREX MOS_ON_REXMIT

eNEW MOS_ON_CONN_NEW_DATA

eREX eNEW

FFAKE

eFAKE

freport fusage

Filter

Built-in events

User-defined event

Event handler
(action)

FFAKE IsFakeRexmit()

eFAKE UDE_FAKE_REXMIT

freport ReportAbuse()

fusage AccountDataUsage()

static void

thread_init(mctx_t mctx)

{

 int msock; event_t fake_rexmit_ev;

 msock = mtcp_socket(mctx, AF_INET, MOS_SOCK_MONITOR_STREAM, 0);

 fake_rexmit_ev = mtcp_define_event(MOS_ON_REXMIT, IsFakeRexmit);

 mtcp_register_callback(mctx, msock, fake_rexmit_ev, MOS_HK_SND,
 ReportAbuse);

 mtcp_register_callback(mctx, msock, MOS_ON_CONN_NEW_DATA, MOS_HK_SND,
 AccountDataUsage);

}

Open Networking Korea (ONK) 2016

mOS Flow Management (Inline Mode)

 Dual TCP stack management

• Infer the states of both client and server TCP stacks

19

mOS stack

emulation

TCP client TCP server

Client side

TCP stack

Receive

buffer

TCP

state

SYN

SYNACK

LISTEN

CLOSED SYN_SENT

Server side

TCP stack

Receive

buffer

TCP

state

SYN_RCVD

ESTABLISHED

Open Networking Korea (ONK) 2016

Fine-grained Resource Allocation

 Not all middleboxes require full features

• Some middleboxes do not require flow reassembly

20

TCP client TCP server

Client side

TCP stack

TCP

state

P

P

Server side

TCP stack

TCP

state

Open Networking Korea (ONK) 2016

Fine-grained Resource Allocation

 Not all middleboxes require full features

• Some middleboxes do not require flow reassembly

• Some middleboxes monitor only client-side data

21

TCP client TCP server

Client side

TCP stack

Receive

buffer

TCP

state

P

P

Open Networking Korea (ONK) 2016

Fine-grained Resource Allocation

 Not all middleboxes require full features

• Some middleboxes do not require flow reassembly

• Some middleboxes monitor only client-side data

• No more monitoring after handling certain events

22

TCP client TCP server

P

P

Global or per-flow

manipulation

Open Networking Korea (ONK) 2016

mOS Networking Stack for End Hosts

 mOS networking stack also provides end host socket APIs

• mOS networking stack can be configured as a end TCP stack

23

TCP client
Server side

TCP stack

Receive

buffer

TCP

state

P

P

mOS TCP server

Open Networking Korea (ONK) 2016

Current mOS stack API
Socket creation and traffic filter

int mtcp_socket(mctx_t mctx, int domain, int type, int protocol);

int mtcp_close(mctx_t mctx, int sock);

int mtcp_bind_monitor_filter(mctx_t mctx, int sock, monitor_filter_t ft);

User-defined event management

event_t mtcp_define_event(event_t ev, FILTER filt);

int mtcp_register_callback(mctx_t mctx, int sock, event_t ev, int hook, CALLBACK cb);

Per-flow user-level context management

void * mtcp_get_uctx(mctx_t mctx, int sock);

void mtcp_set_uctx(mctx_t mctx, int sock, void *uctx);

Flow data reading

ssize_t mtcp_peek(mctx_t mctx, int sock, int side, char *buf, size_t len);

ssize_t mtcp_ppeek(mctx_t mctx, int sock, int side, char *buf, size_t count, off_t seq_off);

Packet information retrieval and modification

int mtcp_getlastpkt(mctx_t mctx, int sock, int side, struct pkt_info *pinfo);

int mtcp_setlastpkt(mctx_t mctx, int sock, int side, off_t offset, byte *data, uint16_t
datalen, int option);

Flow information retrieval and flow attribute modification

int mtcp_getsockopt(mctx_t mctx, int sock, int l, int name, void *val, socklen_t *len);

int mtcp_setsockopt(mctx_t mctx, int sock, int l, int name, void *val, socklen_t len);

Retrieve end-node IP addresses

int mtcp_getpeername(mctx_t mctx, int sock, struct sockaddr *addr, socklen_t *addrlen);

Per-thread context management

mctx_t mtcp_create_context(int cpu);

int mtcp_destroy_context(mctx_t mctx);

Initialization

int mtcp_init(const char *mos_conf_fname);

24

17 functions are currently defined

Open Networking Korea (ONK) 2016

mOS Networking Stack Implementation

 Per-thread library TCP stack

• ~26K lines of C code (mTCP: ~11K lines)

• Based on mTCP user level TCP stack [NSDI ‘14]

25

Exploits parallelism

on multicore systems

Open Networking Korea (ONK) 2016

mOS Networking Stack Implementation

 Event implementation

• Designed to scale to arbitrary number of events

• Identical events are automatically shared by multiple flows

 Applications ported to mOS: ~8x code line reduction

26

Application Modified SLOC Output

Snort 2,104 79,889 HTTP/TCP inspection

nDPI 765 25,483 Stateful session management

PRADS 615 10,848 Stateful session management

Abacus - 4,639 → 561 Detect out-of-order packet retransmission

Open Networking Korea (ONK) 2016

Evaluation: Experiment Setup

 Operating as in-line mode: clients  mOS applications  servers

 mOS applications with mOS stream sockets

• Flow management and forwarding packets by their flows

• 2 x Intel E5-2690 (16 cores, 2.9 GHz)

• 20 MB L3 cache size, 132 GB RAM

• 6 x 10 Gbps NICs

 Six pairs of clients and servers: 60 Gbps max

• Intel E3-1220 v3 (4 cores, 3.1 GHz)

• 8 MB L3 cache size

• 16 GB RAM

• 1 x 10 Gbps NIC per machine

27

Open Networking Korea (ONK) 2016

Performance Scalability over # of CPU cores

28

 Concurrent number of flows: 192,000

• Each flow downloads an 64B or 8KB content in one TCP connection

• A new flow is spawned when a flow terminates

 Two simple applications

• Counting packets per flow (packet arrival event)

• Searching for a string in flow reassembled data (full flow reassembly & DPI)

Open Networking Korea (ONK) 2016

Performance Under Selective Resource Consumption

29

Open Networking Korea (ONK) 2016

Real Application Performance

30

Application original + pcap original + DPDK mOS port

Snort-AC 0.51 Gbps 8.43 Gbps 9.85 Gbps

Snort-DFC 0.78 Gbps 10.43 Gbps 12.51 Gbps

nDPIReader 0.66 Gbps 29.42 Gbps 28.34 Gbps

PRADS 0.42 Gbps 2.05 Gbps 2.02 Gbps

 4.5x ~ 28.9x performance improvement

• Mostly due to multi-core scalable packet processing (DPDK)

 mOS additionally brings code modularity and correct flow

management

 Workload: real LTE packet trace (~ 67 GB)

Open Networking Korea (ONK) 2016

Conclusion

 Current middlebox development suffers from

• Lack of modularity

• Lack of readability

• Lack of maintainability

 Key idea: reusable, common flow management for middleboxes

 mOS stack: abstraction for flow management

• Programming abstraction with socket-based API

• Event-driven middlebox processing

• Efficient resource usage with dynamic resource composition

31

Open Networking Korea (ONK) 2016

Thank You!

 mOS homepage: http://mos.kaist.edu/

• Source code and guides are now available!

 Questions?

32

http://mos.kaist.edu/
http://mos.kaist.edu/

